Search results for "Materials processing"

showing 10 items of 17 documents

On the biomechanical function of scaffolds for engineering load-bearing soft tissues

2009

Replacement or regeneration of load-bearing soft tissues has long been the impetus for the development of bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represe…

ScaffoldEngineeringmedia_common.quotation_subjectBiomedical EngineeringNanotechnologyBiochemistryArticleLoad bearingBiomechanical PhenomenaScaffoldBiomaterialsSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineTissue engineeringAnimalsHumansTissue engineeringMechanical behaviorFunction (engineering)Molecular Biologymedia_commonMaterials processingbusiness.industryRegeneration (biology)Soft tissueExtracellular matrixGeneral MedicineBiomechanical PhenomenaConnective TissueMicroscopy Electron ScanningBiochemical engineeringbusinessBiotechnologyActa Biomaterialia
researchProduct

Stealth dicing with Bessel beams and beyond

2016

In the context of laser cutting of transparent materials, we investigate glass cleaving with Bessel beams and report that a modification of the beam with 3 main lobes drastically enhances cleavability and reduces defects.

symbols.namesakeOpticsMaterials processingMaterials sciencebusiness.industryLaser cuttingsymbolsBeam shapingWafer dicingContext (language use)businessBessel functionBeam (structure)Lasers Congress 2016 (ASSL, LSC, LAC)
researchProduct

Tandem laser-gas metal arc welding joining of 20 mm thick super duplex stainless steel: An experimental and numerical study

2020

The present work covers the topic of strains and stresses prediction in case of welded steel structures. Steel sheets of 20 mm thickness made in UR™2507Cu are welded using a laser and gas metal arc welding processes combination. The focused laser beam leads the arc in a Y-shape chamfer geometry. Both sources are 20 mm apart from each other in order to avoid any synergic effect with each other. In order to predict residual strain, a 3D unsteady numerical simulation has been developed in COMSOL finite element software. A volume heat source has been identified based on the temperature measurements made by 10 K-type thermocouples, implanted inside the workpiece. The 50 mm deep holes are drille…

010302 applied physicsMaterials scienceMaterials processingTandemMechanical EngineeringSteel structures02 engineering and technologyWelding021001 nanoscience & nanotechnologyLaser01 natural sciencesFinite element methodGas metal arc weldinglaw.inventionlaw0103 physical sciencesGeneral Materials ScienceComposite material0210 nano-technologyProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
researchProduct

Plasma etch characteristics of aluminum nitride mask layers grown by low-temperature plasma enhanced atomic layer deposition in SF6 based plasmas

2012

The plasma etch characteristics of aluminum nitride (AlN) deposited by low-temperature, 200 °C, plasma enhanced atomic layer deposition (PEALD) was investigated for reactive ion etch (RIE) and inductively coupled plasma-reactive ion etch (ICP-RIE) systems using various mixtures of SF6 and O2 under different etch conditions. During RIE, the film exhibits good mask properties with etch rates below 10r nm/min. For ICP-RIE processes, the film exhibits exceptionally low etch rates in the subnanometer region with lower platen power. The AlN film’s removal occurred through physical mechanisms; consequently, rf power and chamber pressure were the most significant parameters in PEALD AlN film remova…

Materials scienceta221Analytical chemistryplasma etchingAtomic layer depositionEtch pit densityEtching (microfabrication)SputteringAIN filmsetchingta318Reactive-ion etchingThin filmta216ta116plasma depositionPlasma etchingta213ta114business.industryPhysicsSurfaces and Interfacesatomikerroskasvatusplasma materials processingCondensed Matter PhysicsSurfaces Coatings and Filmsplasmakasvatusthin filmsOptoelectronicsbusinessBuffered oxide etch
researchProduct

Erratum to “A fuzzy logic approach to modeling a vehicle crash test” by W. Pawlus, H. Reza, K. G. Robbersmyr

2013

Abstract The original version of the article was published in Central European Journal of Engineering 3, 67–79 (2013), DOI: 10.2478/s13531-012-0032-2. Unfortunately, the original version of this article contains a mistake in Figure 17. Here we display the corrected version of this figure.

EngineeringEnvironmental EngineeringMaterials processingbusiness.industryMechanical EngineeringAerospace EngineeringIndustrial chemistryMistakemodelingEngineering (General). Civil engineering (General)Fuzzy logicTest (assessment)General Materials ScienceArtificial intelligencevehicle crashfuzzy logicElectrical and Electronic EngineeringTA1-2040businessCivil and Structural EngineeringMotor vehicle crashOpen Engineering
researchProduct

Influence of long chain branching on the elongational behaviour of different polyethylenes and their blends

1986

Elongational data on a series of polyethylenes with different structure and on their blends are presented in order to correlate the extensional behaviour with the long chain branching degree.

chemistry.chemical_compoundMaterials scienceMaterials processingPolymers and PlasticsPolymer sciencechemistryMaterials ChemistryGeneral ChemistryPolyethyleneCondensed Matter PhysicsBranching (polymer chemistry)Long chainExtensional definitionPolymer Bulletin
researchProduct

ELECTROCHEMICAL ANALYSIS ON FRICTION STIR WELDED AND LASER WELDED 6XXX ALUMINIUM ALLOYS T-JOINTS

2007

Friction Stir Welding (FSW) and Laser Welding (LW) can be successfully employed to weld aluminium alloys, in many cases overcoming the difficulties encountered with more conventional welding processes like MIG or TIG. The corrosion resistance of the welded joint remains, however, an important issue, especially in applications (like in aircrafts), where corrosion can induce structural failure: the weld region has often lower mechanical resistance in comparison with the parent material and a decrease in its corrosion resistance, especially when the corrosion damage can represent a potential crack initiation site, can be unacceptable in components design. In this work the corrosion resistance …

Materials processingMaterials scienceGeneral Chemical EngineeringMetallurgychemistry.chemical_elementGeneral ChemistryWeldingElectrochemistryLaserlaw.inventionCorrosionlaser beam weldingchemistryAluminiumlawaluminium alloysGeneral Materials Sciencefriction stir weldingCorrosion resistanceElectrochemistryJoints (structural components)Laser beam weldingSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneCorrosion Reviews
researchProduct

Influence of friction stir processing conditions on the manufacturing of Al-Mg-Zn-Cu alloy/boron carbide surface composite

2018

Abstract Surface metal matrix composites were synthesized via friction stir processing (FSP) on the surface of aluminium alloy 7075 (AA 7075) sheets by incorporating B4C particles (B4CP). The influence of tool rotational speeds, powder particle sizes, and change in tool travel direction between FSP passes on particle distribution and resulting properties were studied in detail. Change in tool travel direction, decreased tool rotation speed and fine B4C particles enhanced B4CP distribution and wear properties thereof. Wear resistance of composites were doubled on account of the B4CP distribution and resultant several strengthening mechanisms.

0209 industrial biotechnologyFriction stir processingMaterials scienceAlloyComposite number02 engineering and technologyBoron carbideengineering.materialIndustrial and Manufacturing EngineeringFriction stir processingchemistry.chemical_compound020901 industrial engineering & automationWearAluminium alloyAluminiumBoron carbideComposite materialSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneStrengthening mechanisms of materialsMetals and AlloysRotational speed021001 nanoscience & nanotechnologyComputer Science ApplicationsMetal matrix compositechemistryModeling and Simulationvisual_artCeramics and Compositesvisual_art.visual_art_mediumengineeringParticleMaterials processing0210 nano-technology
researchProduct

Effect of active heating and cooling on microstructure and mechanical properties of friction stir–welded dissimilar aluminium alloy and titanium butt…

2019

A butt joint configuration of AA6061–pure Ti was welded using friction stir welding (FSW) with an assisted cooling and heating conditions, aiming to attain a flawless joint. Cooling-assisted friction stir welding (CFSW) was carried out with a different cooling medium such as CO2, compressed air and water at controlled flow rate. However, heating-assisted friction stir welding (HFSW) was performed with heating source of GTAW torch just before FSW tool at different current density. Prepared specimens were subjected to optical microscopy (OM), scanning electron microscopy (SEM) and electrodischarge spectroscopy (EDS) for microstructural characterizations. The tensile strength and microhardness…

0209 industrial biotechnologyMaterials scienceDissimilar metal joiningMechanical properties02 engineering and technologyWeldingIndentation hardness020501 mining & metallurgylaw.inventionHeating020901 industrial engineering & automationlawUltimate tensile strengthAluminium alloyFriction stir weldingmechanical propertieboron carbidefriction stir processingComposite materialmetal matrix compositeInterfacial microstructureHybrid friction stir weldingMechanical EngineeringGas tungsten arc weldingMetals and AlloysMicrostructure0205 materials engineeringMechanics of Materialsvisual_artaluminumvisual_art.visual_art_mediumButt jointMaterials processingCooling
researchProduct

Modification of Materials by MeV Ion Beams

2005

Today's fast developing technological based society places ever accelerating demands for new materials and materials processing methods. Leading edge fields as diverse as biomedical tissue engineering, quantum device, optical and magnetic information storage technology as well as immobilization of actinides, all require nanoscale engineering through controlled materials modification. The evolution of these advances from the research science stage to the industrial applications is a particular challenging task. Amongst the beam processing methods for materials modification MeV ions occupy a unique place. They interact strongly with both the atomic and electronic structures of the target mate…

chemistry.chemical_compoundMaterials processingMaterials sciencechemistrySilicon carbideProcess controlNew materialsNanotechnologyBiomedical tissueBeam (structure)Magnetic fieldIon
researchProduct